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Abstract

The propagation of nonlinear Alfvén waves in magnetized plasmas with right
and left circular polarizations is governed by the coupled derivative nonlinear
Schrödinger (CDNLS) system. The integrability of this system is indicated
by the existence of two gauge-equivalent Lax pairs and infinitely many
independent conservation laws. With symbolic computation, the analytic
one- and two-soliton solutions are obtained via the Hirota bilinear method.
The propagation characteristics of the Alfvén waves are discussed through
qualitative analysis. The collision dynamics of the CDNLS solitons is found
to be characterized by the invariance of the soliton velocities and widths,
parameter-dependent changes of the soliton amplitudes and conservation of the
total energy of right- and left-polarized components. The parametric condition
for the amplitude-preserving collision occurring in each component is explicitly
given.

PACS numbers: 52.35.Sb, 02.30.Ik

1. Introduction

Plasmas can be found everywhere in the Universe [1]. It is important to study the dynamics
of Alfvén waves, which are the most ‘robust’ plasma oscillations in a magnetized system
and widespread in space and laboratory plasmas [2, 3]. Numerous observations suggest that
Alfvén wave trains and Alfvénic turbulence widely exist in the Earth’s magnetosphere [4],
solar winds [5], planetary bow shocks [6], dusty cometary tails [7], interplanetary shocks
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[8] and other cosmic environments. References [9, 10] have also reported the experimental
observation of dispersive Alfvén waves in laboratory plasmas, e.g. in tokamaks and linear
devices.

Actual observations have shown that the nonlinearity as well as the dispersion in a
plasma plays a non-negligible role in the propagation of Alfvén waves [4–10]. In a particular
case when the effects of nonlinear steepening and dispersive broadening balance each other,
Alfvén waves evolve into solitons which exhibit stationary shapes over a long time [11].
The derivative nonlinear Schrödinger (DNLS) equation is known to be a model governing
the dynamical behavior of weakly nonlinear and weakly dispersive Alfvén waves in the one-
dimensional approximation [12–18]. The DNLS models are usually derived from the two-fluid
equations and the generalized Ohm’s law together with the adiabatic equation of state under
the following assumptions [11–20].

i. With the ignorance of the variation of density and temperature, and the charge separation
between electrons and ions, the plasma can be reasonably assumed to be uniform, adiabatic
and quasi-neutral. The plane magnetohydrodynamic waves are restricted to propagate
in the x direction (the x component of the magnetic wave field B is a constant) along a
uniform, stationary background magnetic field B0, which lies in the x–y plane inclined at
an angle θ with respect to the x-axis.

ii. Since the phase velocity of Alfvén waves is much smaller than the speed of the light c, the
contribution from the displacement currents is naturally negligible. It also requires that
the pressure tensors for electrons and ions are diagonal and isotropic, and the compression
and expansion occur isentropically.

iii. Long wavelength
di

L
= O(ε),

ri

L
= O(ε), ε � 1,

where di = VA/�i is the ion inertial length, VA = B0/
√

4 π ρ0 (B0 is the static magnetic
field strength and ρ0 is the ambient mass density) is the Alfvén velocity, �i = ZiB0/cmi

(Zi is the ion charge and mi is the ion mass) is the ion cyclotron frequency, ri is the ion
gyro radius, L is the characteristic length and ε is a small parameter characterizing the
weak nonlinearity and weak dispersion.

iv. Small amplitude

|B̃|2
B2

0

= O(ε),

where B̃ = ε−1/2(B̃y + i B̃z) with B̃y and B̃z as two components of the magnetic wave
field in the y and z directions orthogonal to x. The DNLS equation is invalid for very large
amplitude waves because those terms higher than cubic nonlinearities are not included in
the derivation.

v. Slow evolution
1

�i

∂

∂t

= O(ε2),

which implies the constraint that no disturbance is present which propagates at any other
of the characteristic velocity.

The DNLS equation was initially derived from the Vlasov kinetic equation [12], and later
it was obtained on the basis of Hall magnetohydrodynamics for cold plasmas [13, 14]. In
warm two-fluid plasmas, the DNLS model has the following form [15–18]:

i B̃t̃ − i
VA

β ′B2
0

[
B̃

(|B̃|2 − B2
0y

)]
x̃

+
V 2

A

2�i

B̃x̃x̃ = 0, (1)
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where x̃ = ε (x − VAt) is the space coordinate in a frame of reference moving with the
Alfvén velocity, t̃ = ε2 t is the stretched time coordinate, β ′ = 4(β − 1), β = c2

s /V 2
A (cs is

the ion sound velocity) represents the ratio of the kinetic pressure to magnetic pressure and
B0y = B0 sinθ is a constant. Equation (1) is relevant for describing the nonlinear evolution of
Alfvén waves either exactly parallel (B0y = 0) or at a small angle (B0y �= 0) to the background
magnetic field. The complex transverse magnetic field B̃ and its complex conjugate B̃∗

signify the right and left circularly polarized Alfvén waves, respectively. One should bear
in mind that equation (1) is invalid for β � 1 because a ‘static’ approximation used in the
derivation is not appropriate [15, 16]. In [21], a new set of coupled equations has been
derived to describe finite amplitude, dispersive, circularly polarized Alfvén waves in the range
β � 1.

An advantage of the DNLS equation for the nonlinear Alfvén wave description lies
in that it is a completely integrable model which can be solved by the inverse scattering
transform (IST) [22]. In the past three decades, people have detailed its various integrable
properties including the Hamiltonian structures [23], multi-soliton solutions [22, 24], bilinear
representation [24], an infinite number of conservation laws [22, 25], Painlevé property
[26] and Darboux transformation [27]. Of current interest, the investigation on the DNLS
equation can be seen from the aspect of N-soliton solutions and perturbation theory with
nonvanishing boundary conditions based on the IST method [28]. In addition, physicists
have also derived the inhomogeneous DNLS model [29], modified vector DNLS system
[30] and some other extended DNLS equations [31], subject to more complicated plasma
environments.

As shown in [15], equation (1) can be reduced to a simpler form

i qτ + i qξ − i

β ′
(
q |q|2)

ξ
+ μqξξ = 0 with μ = V 2

A

2�i

, (2)

by the transformations

q(ξ, τ ) =
√|β ′|B̃(x̃, t̃ )

B0y

, ξ = B2
0yVAx̃

β ′B2
0

, τ = B4
0yV

2
A t̃

β ′2B4
0

. (3)

Although a number of previous studies were concerned with the application of equation (2) to
the single circularly polarized Alfvén wave, there has not been much attention paid to arbitrary
circularly polarized Alfvén waves which are in nature closer to realistic situations. In this case,
we consider that q in equation (2) is a jointly coupled field and comprised the right and left
circularly polarized Alfvén waves [32]. Hence, we can derive the coupled DNLS (CDNLS)
system in the form

i q1,τ + i q1,ξ − i

β ′
[
q1

(|q1|2 + |q2|2
)]

ξ
+ μq1,ξξ = 0, (4a)

i q2,τ + i q2,ξ − i

β ′
[
q2

(|q2|2 + |q1|2
)]

ξ
+ μq2,ξξ = 0, (4b)

where q1 and q2 represent the right- and left-polarized Alfvén wave components, respectively.
Generally, the integrability of a given nonlinear system is the foremost concern in soliton

theory. As investigated in [32], system (4) is known to be integrable in the sense that it
can be associated with a Lax pair in the 3 × 3 Kaup–Newell (KN) scheme [22]. To collect
more compelling evidence for the integrability of system (4), section 2 will show that this
system can be expressed as the compatibility condition of another Lax pair which is gauge
equivalent to the 3 × 3 KN system, and section 3 will further prove that it also possesses an
infinite number of independent conservation laws. We note that in recent studies attention has

3
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been paid to the soliton dynamics of the coupled nonlinear Schrödinger equations because
the multi-component structure possibly makes the occurrence of some interaction features
such as the intensity redistribution among colliding solitons in all the components, amplitude-
dependent phase shifts and changes in relative separation distances [33–35]. Therefore, a
natural question arises: does the derivative cubic nonlinearity coupling lead some unusual
Alfvén soliton dynamical behaviors which are different from those occurring in the single
DNLS equation? From this consideration, section 4 will be devoted to making clear the
dynamics of Alfvén solitons with right- and left-polarized components. Finally, section 5 will
address the conclusions of this paper. We hope that the Alfvén soliton features obtained in
this work will provide a theoretical insight into various nonlinear Alfvén wave phenomena in
space and astrophysical plasmas.

2. Two types of Lax pairs and gauge equivalence

The Lax pair assures the integrability of a nonlinear evolution equation (NLEE) and plays a
role in solving its initial-value problem [36]. Following the procedure generalizing the 2 × 2
KN scheme to the 3 × 3 case [32, 37], we find that system (4) admits one type of Lax pair as
below:

�ξ = U(I)� = [
λ2U

(I)
0 + λU

(I)
1

]
�, (5a)

�τ = V (I)� = [
λ4V

(I)
0 + λ3V

(I)
1 + λ2V

(I)
2 + λV

(I)
3

]
�, (5b)

where � = (ψ1, ψ2, ψ3)
T (the superscript T denotes the vector transpose) is the vector

eigenfunction, λ is the spectral parameter and the matrices U
(I)
k , V (I)

l (k = 0, 1; l = 0, 1, 2, 3)
are expressible in the form

U
(I)
0 =

⎛
⎜⎝

−i 0 0

0 i 0

0 0 i

⎞
⎟⎠ , U

(I)
1 =

⎛
⎜⎜⎝

0 q1 q2

1
β ′μ q∗

1 0 0

1
β ′μ q∗

2 0 0

⎞
⎟⎟⎠ , (6)

V
(I)

0 = 2 μU
(I)
0 , V

(I)
1 = 2 μU

(I)
1 , (7)

V
(I)

2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i − i

β ′
(|q1|2 + |q2|2

)
0 0

0 −i +
i

β ′ |q1|2 i

β ′ q2q
∗
1

0
i

β ′ q1q
∗
2 −i +

i

β ′ |q2|2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)

V
(I)

3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 iμq1,ξ − q1 +
1

β ′ �1 iμq2,ξ − q2 + 1
β ′ �2

− i

β ′ q
∗
1,ξ − 1

β ′μ
q∗

1 +
1

β ′2μ
�∗

1 0 0

− i

β ′ q
∗
2,ξ − 1

β ′μ
q∗

2 +
1

β ′2μ
�∗

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

with �1 = q1(|q1|2 + |q2|2) and �2 = q2(|q1|2 + |q2|2). It is remarked that the Lax pair
(5) together with equations (6)–(9) agrees with the result in [32] in the sense of a scale
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transformation of independent variables. In addition, based on the matrix-form inverse
scattering problem proposed in [37] (i.e. system (4.1) there), we can obtain another type
of Lax pair associated with system (4), as follows:

�ξ = U(II)� = [
λ′U(II)

0 + U
(II)
1

]
�, (10a)

�τ = V (II)� = [
λ′2V (II)

0 + λ′V (II)
1 + V

(II)
2

]
�, (10b)

with

U
(II)
0 =

⎛
⎜⎝

−i q1 q2

0 i 0

0 0 i

⎞
⎟⎠ , U

(II)
1 =

⎛
⎜⎜⎝

0 0 0
1

β ′μq∗
1 0 0

1
β ′μq∗

2 0 0

⎞
⎟⎟⎠ , V

(II)
0 = 2 μU

(II)
0 , (11)

V
(II)

1 =

⎛
⎜⎜⎝

i − i
β ′ (|q1|2 + |q2|2) 1

β ′ �1 − q1 + iμq1,ξ
1
β ′ �2 − q2 + iμq2,ξ

2
β ′ q

∗
1 −i + i

β ′ |q1|2 i
β ′ q2q

∗
1

2
β ′ q

∗
2

i
β ′ q1q

∗
2 −i + i

β ′ |q2|2

⎞
⎟⎟⎠ , (12)

V
(II)

2 =

⎛
⎜⎜⎝

0 0 0
1

β ′2μ�∗
1 − 1

β ′μq∗
1 − i

β ′ q
∗
1,ξ 0 0

1
β ′2μ�∗

2 − 1
β ′μq∗

2 − i
β ′ q

∗
2,ξ 0 0

⎞
⎟⎟⎠ , (13)

where � = (φ1, φ2, φ3)
T is the vector eigenfunction and λ′ is the spectral parameter.

From the knowledge of the gauge transformation [38], it is easy to find that system (5) is
equivalent to system (10) with the transformation

� =

⎛
⎜⎝

Cλ 0 0

0 C 0

0 0 C

⎞
⎟⎠ �, λ′ = λ2, (14)

where C is an arbitrary nonzero constant. The Lax pair (5) together with equations (6)–(9)
or Lax pair (10) together with equations (11)–(13) not only establishes a scheme for solving
the initial-value problem of system (4) but also provides a basis of studying many other
integrable properties such as the Hamiltonian structures, conservation laws, symmetry classes
and Darboux transformation [36].

3. An infinite number of conservation laws

In this section, starting from the Lax pair (10) together with equations (11)–(13), we will
prove the existence of infinitely many independent conservation laws as a further support of
the integrability for system (4).

Introducing two new variables

ω1 = φ2

φ1
, ω2 = φ3

φ1
, (15)

and taking derivative of ωj (j = 1, 2) with respect to ξ by use of equation (10a) give rise to
the following two Riccati-type equations:

ω1,ξ = −λ′q1ω
2
1 + 2 iλ′ω1 − λ′q2 ω1ω2 +

1

β ′μ
q∗

1 , (16)

5
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ω2,ξ = −λ′q2ω
2
2 + 2 iλ′ω2 − λ′q1ω2ω1 +

1

β ′μ
q∗

2 . (17)

Multiplying equations (16) and (17), respectively, by q1 and q2, and expanding q1ω1 and q2ω2

in power series of 1/λ′ [25]

q1ω1 =
∞∑

m=0

λ′−(m+1)
ω1m(ξ, τ ), q2ω2 =

∞∑
m=0

λ′−(m+1)
ω2m(ξ, τ ), (18)

the recursion formulas for ω1m and ω2m (m = 0, 1, 2, . . .) can be determined as

ω10 = i

2 β ′μ
|q1|2, ω20 = i

2 β ′μ
|q2|2, (19)

ω11 = − i

2
ω1

2
0 − i

2
ω10ω20 + i

q1,ξ

2 q1
ω10 − i

2
ω10,ξ , (20)

ω21 = − i

2
ω2

2
0 − i

2
ω20ω10 + i

q2,ξ

2 q2
ω20 − i

2
ω20,ξ , (21)

ω1m = − i

2

(
m−1∑
k=0

ω1m−k−1ω1k +
m−1∑
k=0

ω1kω2m−k−1 − q1,ξ

q1
ω1m−1 + ω1m−1,ξ

)
(m > 1), (22)

ω2m = − i

2

(
m−1∑
k=0

ω2m−k−1ω2k +
m−1∑
k=0

ω2kω1m−k−1 − q2,ξ

q2
ω2m−1 + ω2m−1,ξ

)
(m > 1). (23)

Use of the compatibility condition (log φ1)ξτ = (log φ1)τξ yields the following equation
in the form of a conservation law:

[λ′(q1ω1 + q2ω2)]τ =
[
λ′(2 λ′μ − 1) (q1ω1 + q2ω2) + i μλ′(ω1q1,ξ + ω2q2,ξ

)
+

λ′

β ′ (q1ω1 + q2ω2 − i)
(|q1|2 + |q2|2

) ]
ξ

. (24)

By substituting equations (18) into equation (24) and equating the terms with the same power
of 1/λ′, after symbolic manipulations, we can naturally gain a sufficiently large number of
conservation laws: i ∂ρk

∂τ
= ∂Jk

∂ξ
(k = 1, 2, . . .), where ρk and Jk (k = 1, 2, . . .) are the

conserved densities and associated fluxes, respectively.

4. The Hirota bilinear method and CDNLS soliton dynamics

The Hirota bilinear method has been used in the construction of the analytic solutions for a
number of NLEEs, including difference-differential and integro-differential equations [39].
In essence, this method requires a clever change of dependent variables, a novel differential
operator and a perturbation expansion to solve the resulting bilinear equations [40]. Once a
given NLEE is bilinearized through certain dependent variable transformation, one can truncate
the formal perturbation expansion at different levels and algorithmically obtain a series of
solutions, especially multi-soliton solutions. Due to the involvement of a large amount of
algebra and calculus calculations which are unmanageable by hand, some computer programs
(e.g. HIROTA SINGLE.MAX [40]) have been developed to facilitate the implementation of
the Hirota bilinear method. With the aid of symbolic computation which is becoming an
important assistant tool for treating soliton equations [40, 41], in the following part we will
employ the Hirota bilinear method [39, 40] to construct the analytic one- and two-soliton
solutions of system (4).

6
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4.1. Bilinearization

For the convenient purpose of computation and analysis, we first scale out the coefficients β ′

and μ, and vanish the terms qj,ξ (j = 1, 2) of system (4). Introducing the following scaling:

t ′ = τ

μβ ′2 , x ′ = τ − ξ

μβ ′ , qj (ξ, τ ) = qj (x
′, t ′) (j = 1, 2), (25)

we can write system (4) as the dimensionless CDNLS system [37]

i q1,t ′ + i
[
q1

(|q1|2 + |q2|2
)]

x ′ + q1,x ′x ′ = 0, (26a)

i q2,t ′ + i
[
q2

(|q2|2 + |q1|2
)]

x ′ + q2,x ′x ′ = 0, (26b)

which can be further transformed into the coupled Chen–Lee–Liu equations [42]

i u1,t ′ + i|u1|2u1,x ′ + iu1u
∗
2u2,x ′ + u1,x ′x ′ = 0, (27a)

i u2,t ′ + i|u2|2u2,x ′ + iu2u
∗
1u1,x ′ + u2,x ′x ′ = 0, (27b)

with

uj = qj e
i
2

∫
(|q1|2+|q2|2)dx ′

(j = 1, 2). (28)

Utilizing the rational dependent variable transformations

u1 = g

f
, u2 = h

f
, (29)

with g, h and f being the complex functions [24], the bilinear representation of system (26) is
obtained as (

i Dt ′ + D2
x ′
)
(g · f ) = 0,

(
i Dt ′ + D2

x ′
)
(h · f ) = 0, (30)

D2
x ′(f · f ∗) = i

2
Dx ′(g · g∗ + h · h∗), (31)

Dx ′(f · f ∗) = i

2
(|g|2 + |h|2), (32)

where Dt ′ , Dx ′ and D2
x ′ are all bilinear operators [39] defined by

Dm
x ′D

n
t ′(a · b) ≡

(
∂

∂x ′ − ∂

∂x ′′

)m (
∂

∂t ′
− ∂

∂t ′′

)n

a(x ′, t ′) b(x ′′, t ′′)
∣∣∣∣
x ′=x ′′, t ′=t ′′

. (33)

Thus, the soliton solutions of system (26) can be obtained by solving the bilinear equations
(30)–(32) with the power series expansion of g, h and f :

g = εg1 + ε3g3 + ε5g5 + · · · , h = εh1 + ε3h3 + ε5h5 + · · · , f = 1 + ε2f2 + ε4f4 + · · · ,
(34)

where ε is the formal expansion parameter.

4.2. One-soliton solutions

Aiming to investigate the propagation characteristics of nonlinear Alfvén waves in uniform
media, we first derive the hyperbolic one-soliton solutions of system (26). With substitution
of the truncations

g = εg1, h = εh1, f = 1 + ε2f2, (35)

7
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into equations (30)–(32), the functions g1, h1 and f2 can be solved as

g1 = α(1)eθ(1)

, h1 = β(1)eθ(1)

, f2 = γ eθ(1)+θ(1)∗
, (36)

with

θ(1) = k(1)x ′ + ik(1)2
t ′, γ = ik(1)

(|α(1)|2 + |β(1)|2)
2
(
k(1) + k(1)∗)2 , (37)

where k(1) + k(1)∗ �= 0, and α(1) and β(1) are arbitrary nonzero complex constants. By
substituting equations (36) and (37) back into equation (29) with ε = 1 and using equations
(25) and (28), the solutions qj (j = 1, 2) are led to

q1 = |α(1)| ei ϕ(1)√
2 |γ | cosh

(
θ(1) + θ(1)∗ + log |γ |) + γ + γ ∗

, (38)

q2 = |β(1)| ei χ(1)√
2 |γ | cosh

(
θ(1) + θ(1)∗ + log |γ |) + γ + γ ∗

, (39)

with

ϕ(1) = − i

2
log

[
α(1)eθ(1)−θ(1)∗(

1 + γ ∗eθ(1)+θ(1)∗)3

α(1)∗(1 + γ eθ(1)+θ(1)∗)3

]
,

χ(1) = − i

2
log

[
β(1)eθ(1)−θ(1)∗(

1 + γ ∗eθ(1)+θ(1)∗)3

β(1)∗(1 + γ eθ(1)+θ(1)∗)3

]
,

where q1 and q2, respectively, correspond to the right- and left-polarized components of the
Alfvén soliton.

It is obvious that |γ + γ ∗| < 2 |γ | when k(1) + k(1)∗ �= 0, so the right- and left-polarized
soliton envelopes exhibit no singularity and maintain stable bell profiles during the propagation.
The amplitudes of qj (j = 1, 2) are respectively given by

A1 = |α(1)|√
2 |γ | + γ + γ ∗ , A2 = |β(1)|√

2 |γ | + γ + γ ∗ , (40)

which are both reached at the center of mass of the soliton:

ξc(τ ) = (4 β + i k(1) − i k(1)∗ − 4)τ

β ′ +
μβ ′ log |γ |
k(1) + k(1)∗ . (41)

By using the vanishing boundary conditions qj |x ′→±∞ = 0 (j = 1, 2), we can compute the
corresponding conserved total energy of two components of the single Alfvén soliton:

E =
∫ +∞

−∞

(|q1|2 + |q2|2
)

dx ′ = 8 tan−1

(
2 |k(1)| − i k(1) + i k(1)∗

|k(1) + k(1)∗|

)
, (42)

which suggests that E is only dependent on the parameter k(1).
Finite-amplitude Alfvén waves have been observed in a variety of plasmas with different

values of β [4, 43]. For example, in the solar wind the range of β is taken as 0 � β < 1
and β > 1. To understand how the parameter β acts on the propagation of Alfvén solitons, a
simple way is to make an analysis of the soliton width and velocity

Wβ = |μβ ′|
|k(1) + k(1)∗| , Vβ = 1 +

i
(
k(1) − k(1)∗)

β ′ . (43)

8
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The sensitive dependence of the soliton width and velocity on β takes place in the neighborhood
of β = 1, at which the soliton width Wβ → 0 and the soliton velocity Vβ → ∞. The
propagation direction of the Alfvén soliton always keeps positive when 0 � β < 1, while for
β > 1 there must be a turning point where the direction changes from negative to positive. If
β is large enough, the soliton width Wβ → ∞ and the soliton velocity Vβ → 1.

4.3. Two-soliton solutions

The Alfvén soliton interaction has been an important subject of considerable experimental
studies, e.g. the experiments conducted with the Large Plasma Device [44]. This triggers our
motivation to construct the two-soliton solutions of system (4), which are expected to be very
helpful for the theoretical explanation of interaction phenomena between nonlinear Alfvén
waves. We substitute

g = εg1 + ε3g3, h = εh1 + ε3h3, f = 1 + ε2f2 + ε4f4, (44)

into equations (30)–(32) and solve the resulting equations, yielding

g1 = α(1)eθ(1)

+ α(2)eθ(2)

, h1 = β(1)eθ(1)

+ β(2)eθ(2)

, (45)

g3 = δ(1)eθ(1)+θ(2)+θ(2)∗
+ δ(2)eθ(1)+θ(2)+θ(1)∗

, h3 = ν(1)eθ(1)+θ(2)+θ(2)∗
+ ν(2)eθ(1)+θ(2)+θ(1)∗

, (46)

f2 = γ eθ(1)+θ(1)∗
+ ζeθ(1)+θ(2)∗

+ κeθ(2)+θ(1)∗
+ πeθ(2)+θ(2)∗

, f4 = σeθ(1)+θ(2)+θ(1)∗+θ(2)∗
, (47)

where

θ(1) = k(1)x ′ + ik(1)2
t ′, θ (2) = k(2)x ′ + ik(2)2

t ′,

δ(1) = α(1)π
(
k(1) − k(2)

)
k(1) + k(2)∗ − α(2)ζ

(
k(1) − k(2)

)
k(2) + k(2)∗ ,

δ(2) = α(1)κ
(
k(1) − k(2)

)
k(1) + k(1)∗ − α(2)γ

(
k(1) − k(2)

)
k(1)∗ + k(2)

,

ν(1) = β(1)π
(
k(1) − k(2)

)
k(1) + k(2)∗ − β(2)ζ

(
k(1) − k(2)

)
k(2) + k(2)∗ ,

ν(2) = β(1)κ
(
k(1) − k(2)

)
k(1) + k(1)∗ − β(2)γ

(
k(1) − k(2)

)
k(1)∗ + k(2)

,

γ = ik(1)
(|α(1)|2 + |β(1)|2)

2
(
k(1) + k(1)∗)2 , ζ = ik(1)

(
α(1)α(2)∗ + β(1)β(2)∗)
2
(
k(1) + k(2)∗)2 ,

κ = ik(2)
(
α(1)∗α(2) + β(1)∗β(2)

)
2
(
k(1)∗ + k(2)

)2 ,

π = ik(2)
(|α(2)|2 + |β(2)|2)

2
(
k(2) + k(2)∗)2 , σ = γπ |k(1) − k(2)|2(

k(2) + k(1)∗) (
k(1) + k(2)∗) − ζκ|k(1) − k(2)|2(

k(1) + k(1)∗) (
k(2) + k(2)∗) ,

with k(1) + k(1)∗ �= 0, k(2) + k(2)∗ �= 0, k(1) + k(2)∗ �= 0 and α(1), α(2), β(1) and β(2) as arbitrary
nonzero complex constants. By taking ε = 1, the two-soliton solutions for system (26) are
obtained as

q1 = (1 + f ∗
2 + f ∗

4 )(g1 + g3)

(1 + f2 + f4)2
, q2 = (1 + f ∗

2 + f ∗
4 )(h1 + h3)

(1 + f2 + f4)2
, (48)

where f2, f4, g1, g3, h1 and h3 have been obtained as above.
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Figure 1. Amplitude-changing collision of the right-polarized Alfvén soliton components S
(1)
1 and

S
(2)
1 with k(1) = 1 + 0.5 i, k(2) = 1 − 0.5 i, α(1) = α(2) = 1, β(1) = −1, β(2) = 0.

4.4. Interaction properties of Alfvén solitons with right and left polarizations

To obtain a clearer understanding of the collision mechanism of Alfvén solitons, we perform
an asymptotic analysis of solutions (48) in a manner like in [33–35]. Without loss of generality,
we assume that k

(1)
I k

(2)
I < 0 and k

(1)
R k

(2)
R > 0 (k(l)

I = i(k(l)∗ − k(l))/2 and k
(l)
R = (k(l)+ k(l)∗)/2

for l = 1, 2), which corresponds to the head-on soliton collision. It can be found that the
Alfvén solitons with right- and left-polarized components possess the following interaction
properties.

1. The velocities and widths of Alfvén solitons keep invariant before and after the collision.
In the reference frame x ′–t ′, the Alfvén soliton velocity uniquely depends on the parameter
k

(l)
I , while the width on k

(l)
R .

2. The amplitude-changing collision occurs for two components of Alfvén solitons under
certain parametric condition. Through simple calculations, we find that each component
of the Alfvén solitons admits the amplitude-preserving collision under the following
condition:

Re
[
α(2)∗β(2)∗ (|α(1)|2 + |β(1)|2) (

α(1)β(2) − α(2)β(1)
) (

α(2)α(1)∗ + β(2)β(1)∗)|k(1)|2k(2)

+ α(1)∗β(1)∗ (|α(2)|2 + |β(2)|2) (
α(2)β(1) − α(1)β(2)

) (
α(1)α(2)∗ + β(1)β(2)∗) ∣∣k(2)

∣∣2
k(1)

]
= 0. (49)

When the relevant parameters do not satisfy condition (49), solutions (48) describe the
amplitude-changing collision between right- and left-polarized components of two Alfvén
solitons. In the illustration, figures 1(a)–(d) show that the amplitudes of two right-
polarized Alfvén soliton components S

(1)
1 and S

(2)
1 , respectively, get compressed and

enhanced after the collision. With an appropriate choice of parameters, it is also possible
that the amplitude-vanishing collision takes place, namely, the amplitude for one of two
colliding Alfvén soliton components totally becomes zero after the collision, as illustrated

10
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Figure 2. Amplitude-vanishing collision of the left-polarized Alfvén soliton components S
(1)
2 and

S
(2)
2 with the same parameters as those in figure 1.
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Figure 3. Evolution of the colliding Alfvén soliton S(2) only with the right-polarized component.
The related parameters are chosen as k(1) = 1 + 0.5 i, k(2) = 1 − 0.5 i, α(1) = 0, α(2) = 1,
β(1) = −1, β(2) = 0.

in figures 2(a)–(d). In particular, if α(1) = β(2) = 0, the soliton S(1) just comprises the left-
polarized component S(1)

2 and the soliton S(2) only contains the right-polarized component
S

(2)
1 . In this case, one can observe from figures 3(a)–(d) and figures 4(a)–(d) that S

(1)
2 and

S
(2)
1 with different ω(1) = k(1)2

and ω(2) = k(2)2
just undergo a slight shape change in the

neighborhood of t = 0.
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Figure 4. Evolution of the colliding Alfvén soliton S(1) only with the left-polarized component.
The choice of parameters follows figure 3.

3. The total energy of right- and left-polarized components for each colliding Alfvén soliton
is conserved during the collision. By verification, it is not difficult to find that

E
(l)−
1 + E

(l)−
2 = E

(l)+
1 + E

(l)+
2 = 8 tan−1

(
2 |k(l)| − i k(l) + i k(l)∗

|k(l) + k(l)∗|
)

, (50)

where E
(l)−
1 and E

(l)−
2 represent the energies of the right- and left-polarized components

of the lth Alfvén soliton before the collision, and E
(l)+
1 and E

(l)+
2 represent the energies of

the right- and left-polarized components of the lth Alfvén soliton after the collision.

It is noted that we can further derive the N-soliton solutions (N � 3) of system (26) and
analyze the collision dynamics among three or more Alfvén solitons in the same way like the
two-soliton case.

5. Conclusions

In the present paper, the DNLS equation has been generalized into the CDNLS system, i.e.
system (4), for describing nonlinear Alfvén waves with right and left polarizations in space
and laboratory plasmas. Trying to show the integrability of the CDNLS system, we have
constructed two types of Lax pairs which are gauge-equivalent to each other, and further proved
the existence of infinitely many independent conservation laws. Another concern of this paper
is to reveal underlying unusual Alfvén soliton behaviors resulting from the derivative cubic
nonlinearity coupling. Via the Hirota bilinear method and assisted by symbolic computation,
we have obtained the analytic one- and two-soliton solutions of system (26). On this basis,
we have discussed the influence of the parameter β on the propagation of Alfvén solitons.
The qualitative analysis has shown that the CDNLS soliton interaction is characterized by the
invariant soliton velocities and widths, changeable soliton amplitudes under certain parametric
condition and conserved total energy of two components for each colliding soliton. The
parametric condition of the amplitude-preserving collision occurring in each component of

12
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Alfvén solitons has been explicitly presented. Finally, we remark that all the analytical results
about system (26) might be applicable to some realistic plasma situations if those dimensional
units are included via transformations (3) and (25).
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